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Abstract—Given the complexity, scale and heterogeneity of
modern power systems, many comprehensive simulation tasks
are almost impossible to carry out without collaboration from
multiple institutions. One way to approach collaborative simula-
tion is through co-simulation. In this approach each institution
contributes a model and the simulation is run distributedly.
Co-simulation environments can be centrally orchestrated or
decentrally orchestrated, each having its own set of advantages
and challenges. In this paper we analyze the merits and challenges
of co-simulation for collaborative simulation between institutions
through two simple co-simulation environments, one centralized
and the other decentralized. We argue that a co-simulation en-
vironment for collaboration between institutions should provide
functionality like standard co-simulation interfaces for a variety
of simulation tools, remote management and configuration, model
compatibility checks, and failure detection and recovery. An
environment with these characteristics can be easily adopted by
a wide range of institutions, which would greatly aid in tackling
the complexity of modern electrical power systems.

Index Terms—Co-simulation, distributed simulation, collabo-
ration, dynamic simulation, @MQ, PowerFactory

I. INTRODUCTION

As power systems evolve, their complexity, scale and het-
erogeneity make them increasingly harder to design and ana-
lyze without the collaboration of multiple parties or institutions
that provide the necessary know-how and have access to the
required information (e.g. TSOs, DSOs, universities, research
institutes, consulting firms). This situation manifests itself
in simulation tasks as well, where models from engineering
branches other than power engineering need to be accounted
for (e.g. communication systems) and interactions between
systems that used to be regarded as relatively independent
must be factored in (e.g. grids of neighboring countries,
transmission and distribution grids). As an example of this
situation, let us consider a case where a TSO needs to
evaluate the impact that the increasing penetration of energy
generation and storage technologies at the distribution level
will have on its transmission grid. Naturally, it would be
difficult for the TSO to carry out said study without models of
the relevant distribution grids. However, this difficulty can be
easily circumvented if the involved institutions (i.e. the TSO
and the DSOs) agreed to simulate collaboratively.

There are two distinct approaches to collaborative sim-
ulation: model exchange and co-simulation. In the former,
different parts of a system are modeled independently but
simulated as one large, merged model. In the later, each part of

the system is modeled and simulated independently by having
each simulator share selected variables with the others at run-
time. A so-called co-simulation master is often in charge of
orchestrating the variable exchange and keeping the simulation
time of each simulator consistent with that of the others.

Co-simulations can be classified according to the way they
are orchestrated in centralized and decentralized. Centralized
co-simulations are orchestrated by a co-simulation master
whereas decentralized co-simulations are orchestrated by the
simulators themselves. The differences between both types of
co-simulation manifest themselves in the way they are man-
aged and the way they operate, and can have consequences that
are worth examining from the point of view of collaborative
simulation.

Standards like the Functional Mock-up Interface (FMI),
originally developed for the automotive industry, provide the
means for collaborative simulation through model exchange
and co-simulation [1], but the lack of power engineering
tools that support the standard has been an obstacle to its
widespread adoption. Another standard that does enjoy more
support from power system simulation tools is the Common
Information Model (CIM), which facilitates the exchange of
model information. Recently, ENTSO-E began to implement
the Common Grid Model (CGM) [2], a pan-European grid
model for accurately forecasting electricity flows across the
European grid, which requires TSOs to collaborate by sub-
mitting their system’s data using the CIM. Yet, co-simulation
as a medium for collaborative simulation has not been given
the same attention in the electrical power industry as it has in
other industries.

Examples of co-simulation in power engineering applica-
tions abound. The approach has been successfully used to an-
alyze coupled transmission and distribution systems [3], multi-
area systems [4], and interactions between power systems and
ICT [5], among others. Nevertheless, few of these examples
are intended for the specific purpose of collaboration between
institutions.

In this paper we analyze the merits of distributed co-
simulation as a tool for collaborative dynamic simulation of
electrical grids. For this purpose we present two co-simulation
environments, one centrally orchestrated and the other decen-
trally orchestrated, and use them to guide our analysis. Both
environments are distributed in the sense that each simulator
can run on a different computer, and these computers can be



located wherever it is most convenient for each collaborating
institution.

The paper is structured as follows: Section II discusses the
merits and drawbacks of co-simulation for collaborative simu-
lation, Section III introduces the centralized and the decentral-
ized co-simulation environments and provides an example of
their operation, Section IV compares both environments from
the point of view of collaborative simulation, and Section V
concludes the paper.

II. CO-SIMULATION FOR COLLABORATIVE SIMULATION

Let us expand the description of the case from the introduc-
tion where a TSO needs to evaluate the impact of storage and
generation at the distribution level on its transmission grid. The
TSO commissions the required study to a consulting firm that
determines that there are two distribution grids in particular
that must be considered in detail. The consulting firm requests
collaboration from the corresponding DSOs, but out of privacy
concerns they are reluctant to sharing their grid data. For
a situation as this one, using co-simulation for collaborative
simulation between institutions has several advantages with
respect to model exchange. We identify the following:

e Privacy: Collaborating institutions do not need to share
their models, or disclose any private information about
them, since co-simulation only requires selected variables
to be exchanged between simulators at run time, while
each model remains within the institution that owns it.

o Tool freedom: Each collaborating institution can continue
to develop models for and run simulations with the tool
of its choice, since information is exchanged between
simulators through a standard, tool-independent protocol.

e Reduced workload: Tool freedom removes the need for
translating models between tools or languages and for
merging them, which is a highly labor intensive task [6].
This is especially true for dynamic models, which are
considerably more detailed than their static counterparts.

o Shared computational load: The computational load of
the co-simulation can be shared among collaborating
institutions, since each simulator can run on a different
computer if data is exchanged over a network. This can
be particularly advantageous for dynamic simulations,
since these models are much larger and computationally
expensive to simulate than their static counterparts.

e Up-to-date models: Model updates can be quickly avail-
able to all collaborating institutions; as soon as an in-
stitution updates its model locally, the co-simulation is
updated as well.

However, co-simulation also poses certain challenges to
collaborative simulation that model exchange does not. We
identify the following:

o Implicit assumptions: Any implicit assumptions that an
institution makes about the models and simulators of
the others can cause problems if these assumptions are
wrong. Examples of this are when one simulator expects
three phase inputs while the other provides three sequence

outputs, and when the interface variables have mismatch-
ing units.

o Compatibility verification: The lack of a model merging
process carried out by a single institution increases the
difficulty of verifying that no wrong implicit assumptions
were made and that all models are compatible.

o Interface specification: Collaborating institutions must
place special care in specifying their model interfaces to
make up for the absence of a compatibility verification
process and to reduce the chances of making implicit
assumptions.

o Numerical considerations: Co-simulations require numer-
ical considerations related to accuracy and stability that
simulations using one merged model do not [7].

o Unavailable functionality: Some co-simulations can re-
quire functionality that certain simulation tools cannot
provide. Functionality like time roll back or time step rep-
etition for iterative co-simulation methods are common
examples of this problem [7]. If at least one collaborating
institution uses a simulation tool that lacks the required
functionality, collaboration will be hindered.

o Environment management: In the absence of a coor-
dinating institution, tasks like loading models, starting
simulators and retrieving results are more difficult to
execute. The co-simulation environment can potentially
provide functionality to allow any collaborating insti-
tution to execute these tasks remotely, but this opens
additional questions about privacy and security since in
this case each institution would have to grant access to
their computing infrastructure to other institutions.

o Failure recovery: If any component in a co-simulation
fails at run-time, progress will be lost. This can be costly
for co-simulations that take a long time to complete.
Failure detection and recovery mechanisms are valuable
in such cases, but detecting the failure of one component
in a distributed simulation is more challenging than
detecting the failure of a monolithic simulation.

Despite these challenges, there are situations where co-
simulation is better suited for collaboration than model ex-
change. In the case of the TSO and the two DSOs, co-
simulation can be justified by the need for privacy. In other
cases, a model merging process might be too costly, especially
if model updates are frequent, which would turn the model
merging process into a bottleneck in the simulation workflow.

III. CO-SIMULATION ENVIRONMENTS

We developed two simple co-simulation environments, each
following a different approach to co-simulation orchestration.
The environments were built using only widely adopted and
well supported technologies. In the first one a co-simulation
master centrally orchestrates the co-simulation, whereas in the
second one the simulators themselves orchestrate it distribut-
edly. Although more advanced co-simulation environments
that follow each of these approaches already exist (e.g. mosaik
for centralized orchestration [8] and FNCS for decentralized
orchestration [9]), building these two environments using the
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Fig. 1. Diagram of the centrally-orchestrated co-simulation environment. Each institution is represented by a different server running DIgSILENT PowerFactory.
A co-simulation master is in charge of orchestrating the co-simulation. The communication is implemented with request (REQ) and repy (REP) sockets from

the OMQ library.
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Fig. 2. Diagram of the decentrally-orchestrated co-simulation environment. Each institution is represented by a different server running DIgSILENT
PowerFactory. The co-simulation orchestration is done by the co-simulation interfaces. The communication is implemented with publish (PUB) and subscribe

(SUB) sockets from the @MQ library.

same set of technologies makes the comparison straightfor-
ward.

A. Co-Simulation with Centralized Orchestration

Fig. 1 shows a diagram of the centrally-orchestrated co-
simulation environment. The environment is composed of a
set of Windows 2012 virtual servers, each running a different
instance of DIgSILENT PowerFactory 15.2. A co-simulation
master implemented in Python 3 runs on another virtual server.
Each simulator uses a co-simulation interface to interact with
the co-simulation master.

The co-simulation interface is composed of a DIgSILENT
Simulation Language (DSL) model and a Dynamic-Link Li-
brary (DLL) written in C++. PowerFactory loads the DLL at
startup making its functionality accessible to the DSL model

through DSL function calls. The DSL model is in charge of
getting the output variables from the grid model, and passing
them to the DLL. The DLL then uses these variables to create
an output message which it sends to the master. All output
messages are time-stamped with the current simulation time.
Once the DLL receives an input message from the master
containing input variables for the grid model, the DSL model
gets the variables from the DLL and sets them in the grid
model so PowerFactory can solve the next time step.

The communication between the co-simulation interface
and the co-simulation master is implemented with @MQ
request/reply sockets [10] and messages encoded in JavaScript
Object Notation (JSON). In the implemented request/reply pat-
tern, each co-simulation interface opens a request-type socket
and the master opens a reply-type socket. Every request socket



connects to the reply socket, and sends request messages
(output messages) to the master containing the output variables
of the corresponding PowerFactory instance. When the master
receives all the requests for a given time step, it creates reply
messages (input messages) containing the inputs that every
PowerFactory instance needs to solve the next time step, and
sends each of the messages to the corresponding instance.

B. Co-Simulation with Decentralized Orchestration

Fig. 2 shows a diagram of the decentrally-orchestrated co-
simulation environment. This environment is also composed of
a set of Windows 2012 virtual servers running PowerFactory
15.2, but in this case there is no co-simulation master. The
co-simulation interface differs from the one in Fig. 1 in the
functions it performs and in the number and type of sockets
it uses.

Each interface uses one publish-type and one subscribe-
type socket. In the implemented publish/subscribe pattern,
each publish socket makes output messages public to any
PowerFactory instance that needs them, while each subscribe
socket subscribes only to the messages the corresponding Pow-
erFactory instance requires. As opposed to the environment
from Fig. 1 where it is a task of the co-simulation master to
create input messages with all the inputs each PowerFactory
instance needs, and each PowerFactory instance receives only
one message per time step, in the decentrally-orchestrated
environment the co-simulation interface can receive messages
from several simulators at every time step. It is thus a task of
the co-simulation interface to determine when all the required
input messages have arrived and to extract the necessary inputs
from them so that PowerFactory can solve the next time step.

C. Integration of Other Simulation Tools

Although the presented environments only consider Power-
Factory as a simulator, the technologies used to implement the
environments make it feasible to integrate other simulators as
well. There are several reports of co-simulations that include
other popular power engineering simulation tools, such as
[11] that couples PSS/E and PSCAD and [12] that couples
PowerFactory and PSS/E. However, most of these examples
are incompatible with each other. This means that the main
challenge to seamless integration of simulation tools into a
co-simulation environment that can be used for collaboration
between institutions is not just to interface the simulators,
but to create compatible interfaces for each of them, so that
no matter the simulation tool, collaboration is still possible.
In this sense, standardization is fundamental to successful
collaborative co-simulation.

D. Co-Simulation Example

To provide an example of both co-simulation environments
working, let us go back to the case of the TSO and the
two DSOs described in Section II. We now set up a co-
simulation using the nine bus system from Fig. 3 to represent
the transmission grid of the TSO and two 13 bus systems as the
one from Fig. 4 to represent the distribution grids of the DSOs.

Fig. 3. One-line diagram of the nine bus transmission system. The current
source at bus 6 represents the distribution grids.
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Fig. 4. One-line diagram of the 13 bus distribution system. The voltage source
at bus 650 represents the transmission grid.

The grids are coupled using ideal voltage and current sources.
From the transmission grid point of view, the distribution
grids are current sources (see bus 6 in Fig. 3), whereas from
the distribution grid point of view, the transmission grid is a
voltage source (see bus 650 in Fig. 4). Thus, at every time
step the transmission grid simulator sends the voltage at bus 6
to the distribution grid simulators, while the distribution grid
simulators send the current through bus 650 to the transmission
grid simulator.

Fig. 5 shows some sample results from a co-simulation
as the one described above, where a short circuit occurs in
one of the distribution grids after 0.05 s. The results shown in
Fig. 5 are the three-phase voltage at bus 6 in the transmission
grid, and the current flowing between the transmission and
distribution systems as measured at the same bus. According
to Fig. 5 the results obtained with both environments match.
This is because in both cases the messages exchanged between
simulators are exactly the same; the only difference is the
mechanism employed to deliver them. The implications of this
difference are discussed in the next section.

IV. CENTRALIZED VERSUS DECENTRALIZED
ENVIRONMENTS FOR COLLABORATIVE SIMULATION

Differences between the centralized and the decentralized
co-simulation environments appear at different stages in their
development and use. Some of these differences are particu-
larly relevant for collaborative co-simulation.

A. Implementation

Arguably the most important activity that takes place before
co-simulation execution is the implementation of the co-
simulation environment. Correctly implementing a centralized
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Fig. 5. Voltage and current flowing through the interface bus as measured on
the transmission grid. The figure shows phases a, b, and c for centralized and
decentralized orchestration. As expected, the results from both co-simulation
environments match.

environment is easier than a decentralized one. This is because
in a centralized environment the co-simulation master has
a complete overview of the co-simulation state. With this
information it is straightforward for the co-simulation master
to decide how to proceed. In contrast, in a decentralized
environment each simulator only interacts with its neighbors
and must make decisions based exclusively on the information
it exchanges with them. Thus, the complexity of the algorithms
required to make the same decisions in the decentralized case
is higher.

B. Master Allocation

In the case of a centralized environment one institution
must run and manage the co-simulation master. This institution
would incur the costs that stem from both of these activi-
ties, but would also have privileged access and control over
the co-simulation environment. However, this privilege could
raise additional privacy and security concerns from the other
involved institutions. If one of the collaborating institutions or
a third party is trusted by all (e.g. ENTSO-E in the case of
European TSOs), this problem can be easily solved. If that is
not the case, a decentralized environment might be a better
alternative.

C. Configuration

Centralized and decentralized co-simulation environments
are configured differently. In the centralized environment each
co-simulation interface and the co-simulation master must be
configured, whereas in the decentralized environment there
is no master to configure. In the centralized environment
from Fig. 1, each interface requires an address to connect
its request socket to the reply socket in the master. At the
same time, the master requires a representation of the co-
simulation topology to determine how to create input messages
for each simulator from the output messages it receives. In
the decentralized environment from Fig. 2 each co-simulation
interface requires a list with the addresses of the simulators
it must subscribe to, including which specific outputs it needs

from each simulator. In all cases certain modifications need
to be introduced in the models so the co-simulation interface
can get their outputs and set their inputs. In the co-simulation
example from Section III, these modifications are adding the
ideal voltage and current sources in the systems from Fig. 3
and Fig. 4. These modifications can be considered part of the
configuration process as well.

In the simplest case, each institution would be in charge of
configuring its own co-simulation interface (and model). If a
centralized environment is used, the institution in charge of
the master would also be in charge of configuring it. The
disadvantages of this configuration procedure are that it is
prone to error and that errors are difficult to trace, as the
configuration information is split among different institutions.
Additionally, both the likelihood of an error and the difficulty
of tracing it increase with the number of coupled simulators.
Furthermore, as the number of collaborating institutions grows,
the configuration procedure becomes increasingly harder to
manage, since all of the institutions need to proceed in
coordination with their peers.

Alternatively, only one institution could remotely configure
the co-simulation environment. This way the configuration
information can remain concentrated, making the configura-
tion procedure simpler, less error prone and more scalable.
However, before adding this functionality to a co-simulation
environment intended for collaboration, the level of access
that should be available through remote configuration must
be defined. Certain configuration-related activities might only
raise security concerns whereas others might raise privacy
concerns as well. An example of the former is interconnecting
simulators in a certain topology, since this would require
access to the computing infrastructure of another institution.
An example of the later is defining model inputs and outputs
(and introducing the associated model modifications), since
this would required access to the models themselves. If re-
mote configuration functionality is implemented, whether the
environment is centralized or decentralized becomes irrelevant
from the configuration point of view; in both cases the
procedure would be the same.

D. Synchronization at Start-Up

In the centralized environment, when a simulator is started
it sends a request (output) message to the co-simulation master
and waits for a reply (input) message before it solves the
next time step. The master does not send reply messages to
the simulators until all of them have sent their first requests,
which ensures correct synchronization between simulators
at start-up. However, in the decentralized environment any
simulator could potentially publish an output message before
the subscriber simulators are running. If this happens, the
first output message would be lost and the synchronization
between simulators at startup would fail. To avoid this, an
additional synchronization mechanism is necessary at start-
up, which requires that simulators exchange synchronization
messages until they determine that all of their subscribers
are running. The added complexity of this synchronization



mechanism exemplifies why a distributed environment is more
difficult to implement.

E. Scalability

Both environments have different scalability properties. In
the centralized environment all output messages are sent to the
co-simulation master. The master must process those messages
and then create and send input messages to every simula-
tor. Thus, in the centralized case all messages pass through
the co-simulation master, whereas in the decentralized case
messages can be exchanged directly between simulators. For
co-simulations that couple a large number of simulators, the
master can become a bottleneck. The importance of scalability
depends on the involved institutions. If the collaborating insti-
tutions were the TSOs that belong to ENTSO-E, scalability
would be critical given the large number of participating
institutions, but in a case as the one from our example co-
simulation with only one TSO and two DSOs, scalability
would not be the main concern.

F. Summary

Table I summarizes the different characteristics of central-
ized and decentralized co-simulation environments and their
consequences for collaborative simulation.

TABLE I
CENTRALIZED VERSUS DECENTRALIZED CO-SIMULATION FOR
COLLABORATIVE SIMULATION

Characteristic Centralized Decentralized

Implementation Less challenging More challenging

For simulators

Resource allocation
and master

For simulators only

Challenging without ~ Challenging without

Configuration special functionality special functionality
Scalability Less scalable More scalable

. Trusted institution No trusted institution
Collaboration

Small scale Large scale

V. CONCLUSION

This paper discussed the merits of co-simulation for col-
laborative simulation of electrical power systems through two
co-simulation environments: a centralized and a decentralized
one. Co-simulation has several characteristics that make it
an appealing tool for collaboration between institutions like
TSOs, DSOs, research institutes, universities and consulting
firms. As a tool it is especially useful in cases where model
privacy and simulation tool freedom are necessary, and when
the simulation must be implemented quickly by avoiding
model migration and cumbersome model update procedures.
In some cases, the collaborating institutions can also benefit
from sharing the computational load of the co-simulation.

Regarding the choice between a centralized co-simulation
environment (orchestrated by a co-simulation master) and
a decentralized co-simulation environment (orchestrated by
the simulators themselves) the main aspects to consider are

scalability with respect to the number of collaborating in-
stitutions and whether the use of a co-simulation master is
appropriate; when scalability is unimportant and there is a
trusted institution willing to run and manage the master, the
simplicity of a centralized environment is preferable. Other-
wise, a decentralized environment over which every institution
has the same level of control and access is preferable.

However, using co-simulation for collaborative simulation
comes with challenges related to simulation tool diversity,
model compatibility, environment management, configuration
procedure and failure recovery. Although it is possible to im-
plement simple yet functional co-simulation environments for
collaboration despite these challenges, as the two environments
presented in this paper show, an environment that is intended
for widespread adoption must provide functionality that ad-
dresses said challenges. Thus, co-simulation interfaces for as
many popular electrical power engineering simulation tools
as possible, automatic model compatibility checks, remote
environment management and configuration, and failure detec-
tion and recovery should be available. If an environment with
these characteristics is developed, collaborative simulation can
become more accessible to a wider range of institutions, which
can be a great asset as electrical power systems become more
complex.
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