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Abstract—The unprecedented complexity of modern power
systems has created a need for analyzing the interactions between
different power system areas, which requires detailed physical
models of all involved grids. However, a single institution seldom
has access to enough information to build a complete model of
a multi-area system. Additionally, such a model would be too
labor-intensive to build and too computationally expensive to
simulate. Co-simulation is an alternative that allows different
institutions (TSOs, DSOs, research institutes, etc.) to simulate
cooperatively by interconnecting their simulation tools, without
having to disclose their grid models, and while sharing both
the burden of model development and the computational load
of the co-simulation. We present a co-simulation environment
designed for researching the variable-rate (variable time step size)
synchronization methods needed in a multi-institution setting.
The environment can couple an arbitrary number of instances of
DIgSILENT PowerFactory running on different virtual servers,
at different rates, each representing a different area. An example
use case with a three area system illustrates some of the main
features of this environment. Errors bellow 5 % are evidence that
this type of co-simulation is feasible, but long execution times
point to additional challenges.

Index Terms—Co-simulation, distributed simulation, master
algorithm, multi-area, PowerFactory, transmission systems

I. INTRODUCTION

Modern power systems have reached an unprecedented level
of complexity due to the introduction of renewable energy
generation, energy storage, power electronics and advanced
control strategies. The widespread and distributed presence of
these technologies has made the interaction between different
power system areas harder to understand and predict. As a
consequence, simulations that allow the study of interactions
between interconnected areas are increasingly necessary.

Traditional power system simulations rely on a detailed
model of the area of interest and simplified equivalent models
of all neighboring areas. Yet, simplified models cannot ensure
that the interactions between areas are captured in sufficient
detail; analyzing these interactions demands detailed physical
models of all involved grids. This is challenging because
detailed information about all areas in a system is seldom
available to a single institution, because building and maintain-
ing models of such proportions is extremely labor intensive,
and because simulating them would be computationally pro-
hibitive. Such a situation occurs, for example, when multiple
TSOs must carry out integration studies of their grids.

Co-simulation is an alternative approach to this simulation
problem. Following this approach, each area can be modeled
and simulated in a different simulation tool (or simulator), and
interconnections between areas can be established by intercon-
necting corresponding simulators. A co-simulation master is in
charge of orchestrating a synchronized data exchange between
simulators [1]. This approach has several advantages:

• Each grid model can be developed and maintained inde-
pendently by the institution that has access to the required
information.

• Each institution can continue to develop models for and
run simulations with the tool of its choice, since infor-
mation must be exchanged between simulators through a
standard, tool-independent protocol.

• Institutions do not need to share or disclose their mod-
els, or any private information about them, since co-
simulation only requires selected variables to be ex-
changed at run time.

• The burden of model development and maintenance can
be shared among institutions.

• The computational load of the co-simulation can be
shared among institutions, since each simulator can run
on a different computer if data is exchanged over a
network.

However, co-simulations often produce less accurate results
than monolithic simulations [2]. Additionally, the potentially
large number of simulators required to co-simulate an entire
power system and the possibility that some of them adjust their
time step at run time considerably increases the complexity
of simulator synchronization, which in turn can increase
execution time. Moreover, it becomes necessary to initialize
independent simulators through power flow calculations that
are mutually consistent.

The accuracy and numerical stability of co-simulations have
been widely researched for the case of two dynamic simulators
(e.g., [2]). Typically, both simulators use the same time step
size, or the step size of one is a multiple of the other. There
is still a need for research on how different synchronization
methods influence accuracy for more than two simulators,
where at least one runs at a variable rate (variable step size).

Co-simulations that couple an arbitrary number of simula-
tors have mostly been researched from the software viewpoint.



Notable examples are environments based on mosaik (e.g.,
[3]) and on the high-level architecture or HLA (e.g., [4]).
Nevertheless, these environments are currently inadequate for
researching variable-rate, dynamic co-simulations of multi-
area systems. In the case of mosaik, implementing the bidi-
rectional data exchange needed in dynamic co-simulations
is cumbersome, and only one synchronization method is
available [5]. In the case of the HLA, coupling continuous
simulators is not straightforward, as the HLA was originally
developed for event-based simulators [4]; this can be especially
troublesome if interpolation and/or extrapolation of simulator
outputs is needed, which is the case of dynamic, variable-
rate co-simulations. Furthermore, both mosaik and the HLA
impose requirements that most traditional dynamic power
system simulators struggle to comply with. Thus, a tool that
enables research on how to best couple and synchronize these
simulators is needed.

To address this need, our paper presents the first step in the
development of a co-simulation environment for researching
the effect of different coupling and synchronization methods
on the accuracy and computational performance of variable-
rate, dynamic, multi-area power system co-simulations. The
environment is composed of a set of instances of DIgSI-
LENT PowerFactory running on different virtual servers that
represent the simulators of different institutions (TSO, DSO,
research institute, etc.), and a co-simulation master that pro-
vides facilities that allow the user to implement different syn-
chronization methods. The environment imposes very simple
requirements on the simulators, making it is easy to include
simulators other than PowerFactory.

The paper is structured as follows: Section II summarizes
the design and implementation of the environment, Section III
focuses on the initialization and synchronization of simulators,
Section IV introduces an example use case, and Section V
presents the conclusions.

II. DESIGN AND IMPLEMENTATION OF THE ENVIRONMENT

The co-simulation environment consists of a set of Power-
Factory simulators and a co-simulation master, as illustrated
in Fig. 1. Each instance of PowerFactory runs on a different
virtual server. The only requirement the environment imposes
on the simulators is that they are able to send their outputs
to the master through a TCP/IP socket connection and wait
for inputs from the master before executing a new time step.
The master provides facilities for implementing user-defined
synchronization methods. Since PowerFactory requires the
use Windows servers, the environment is managed through
PowerShell remote sessions.

A. Simulators

PowerFactory is a simulator capable of running dynamic
simulations of transient stability type (TS), also referred to
as root mean square (RMS), and of the electromagnetic
transient type (EMT). Unless the real time mode is used,
this simulator uses adaptive time step solvers that adjust the
simulation step when an event occurs (e.g., short circuit, load,

tap change events). To send and receive data, each simulator
must implement a DSL1 block that reads data from the grid
model and sends it through a socket connection, and receives
data from the socket connection and sets it inside the grid
model. This is done each time step using the external DLL2

from [6].
Using the Python API provided by PowerFactory, a script

was developed that starts PowerFactory in engine mode,
configures it, runs the simulation, and retrieves the results of
interest. This script requires the following information to be
specified as a command line argument in a JSON3-formatted
object:

• IP address of the server where the master resides.
• TCP port where the master expects the simulator to

connect.
• Simulation type (RMS or EMT).
• Start time, end time and (maximum) time step size.
• Instructions for result monitoring and retrieval.

B. Co-Simulation Master

The co-simulation master is composed of a set of simulator
proxies, which are simulator abstractions and act as the in-
terface between the master and the simulators, a synchroniza-
tion module that enables coordinated data exchange between
proxies, and a synchronization request queue that serves as a
signaling mechanism to indicate that synchronization between
simulators is needed. This structure is shown in Fig. 1.

The co-simulation master was implemented as a Python
script that expects the following information to be provided
as a command line argument in a JSON-formatted object:

• IP address of the server where the master resides.
• TCP port where the master expects each simulator to

connect.
• Unique name for each simulator.
• Number of outputs of each simulator.
• Source of the inputs of each simulator.

1) Simulator Proxy Modules: A simulator proxy module
is as an abstraction of a simulator designed to simplify the
interaction between the co-simulation master and a simulator.
Simulator proxies are in charge of handling the socket con-
nections through which data is exchanged, and of providing a
standard interface that the synchronization module can use to
enable coordinated data exchange between simulators.

To handle the socket connection, the simulator proxy must
be capable of accepting a connection, converting data between
the binary formats used within the TCP/IP channel and within
the co-simulation master, sending and receiving data, and
safely closing the connection once it is no longer needed.
Since a simulator can send data to the master at any moment,
a dedicated thread is in charge of receiving data from the
simulator asynchronously.

1DIgSILENT Simulation Language
2Dynamic-link library
3JavaScript Object Notation



Co-simulation master

Simulator
proxy 1

Simulator
proxy 2

. . . Simulator
proxy N

Synchronization
module

2N7 5 1 N

Synchronization request queue

Simulator
1

Server 1

Simulator
2

Server 2

. . . Simulator
N

Server N

TCP/IP TCP/IP TCP/IP

Fig. 1. Structure of the co-simulation environment.

These modules are implemented as finite state machines that
can be in one of four states (see Fig. 2): The disconnected state
indicates that no socket connection between the proxy and
the simulator has been established, ready that a connection
has been established and the simulator is ready to start a
simulation, running that the simulator is executing a time step,
and waiting for inputs that the simulator has just finished a
time step, has sent its outputs to the co-simulation master and
is awaiting inputs.

When data arrives, the simulator proxy first appends it to a
fixed-size FIFO buffer from which it can be retrieved in the
future (if required) and then signals a need for synchronization
by placing a request in the synchronization request queue.
Because not all simulators can be expected to run at the
same rate, a given simulator may need the outputs of another
simulator at a time for which outputs are not produced. In this
case, the values of these outputs at the required simulation time
can be estimated by interpolating the outputs already available
in the aforementioned FIFO buffer.

The interface that each simulator proxy provides to the
synchronization module is implemented through a set of four
methods that
• retrieve simulator outputs at a given simulation time,
• retrieve the current simulator time,
• retrieve the state of the simulator proxy,
• and set the inputs of a simulator.
2) Synchronization Module: The synchronization module is

in charge of exchanging data between source and destination
simulators, and is the only module in the co-simulation master
that needs to be aware of the topology of the co-simulation.
The synchronization module is automatically executed when
there is a synchronization request in the queue. When exe-
cuted, this module must determine how to proceed based on
the simulator time, the state of each proxy, and a user-defined
synchronization method. If the inputs that a (destination) proxy
requests can already be retrieved from the remaining (source)
proxies, the synchronization module can retrieve them from
the source proxies and set them in the destination proxy. Once
the inputs are set, the simulator connected to the destination
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Simulator
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Proxy inputs are set

Proxy receives
simulator outputs

Simulator disconnects
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Fig. 2. State diagram of a simulator proxy (DI: disconnected, RE: ready, RU:
running, WI: waiting for inputs).
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Fig. 3. Structure of a: (a) simulator output message of length I values plus
time stamp, (b) simulator input message of length J values. Each value is
double-precision floating-point (8 bytes).

proxy can resume execution.
3) Synchronization Request Queue: The synchronization

request queue is an asynchronous signaling mechanism that
simulator proxies use to indicate a need for synchronization
to the synchronization module (need for inputs from other
simulators). Each request contains an identifier of the proxy
that placed it. The purpose of this queue is to ensure that no
synchronization request goes unattended, even if the synchro-
nization module is busy when the request is placed.

C. Simulator Input and Output Messages

All messages that are received in and sent from a simulator
contain double-precision floating-point values only. Simulator
output messages are always time-stamped for synchronization
purposes, while input messages are not (see Fig. 3). The
messages may contain any numerical values that need to be
exchanged.

D. Configuration

To configure the environment, the information that each
simulator and the master expect as command line arguments
must be specified. This is done in a single JSON file that must
contain the IP address of the server where the co-simulation
master is located, as well as the following information for each
individual simulator:
• Unique simulator name.
• TCP port where the master expects the simulator to

connect.
• Number of simulator outputs.
• Source of each simulator input.
The source of each input is specified as a list where each

entry is a combination of source simulator name and output
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Fig. 4. Co-simulated three area system. Each area is a modified IEEE 9 bus system as specified in [7], and is simulated in a different instance of PowerFactory
running on a different virtual server. Out of service elements are colored gray.

number. For example, if the inputs of a given simulator
are specified as [["B", 0], ["B", 3], ["C", 0]]
in the JSON configuration file, it means that input 0 comes
from output 0 of simulator B, input 1 comes from output 3 of
simulator B, and input 2 comes from output 0 of simulator C.

E. Management of the Environment

All processes that take part in the co-simulation environment
(i.e., simulators and co-simulation master) run on different
servers. This means that set-up, start-up and result retrieval
must be done remotely. Since the Python scripts that perform
these actions are configured through command line arguments,
these actions can be performed by establishing PowerShell re-
mote sessions with each virtual server. This can be automated
in a PowerShell script.

III. INITIALIZATION AND SYNCHRONIZATION OF
SIMULATORS

Each simulator in the co-simulation needs initial conditions
that are consistent with those of the remaining simulators.
At the same time, once a common starting point for all
simulators is found, data exchange between simulators must
be coordinated with the simulation time of each one of them.

A. Initialization Method

PowerFactory determines initial conditions through power
flow calculations. To determine a set of initial conditions that is
consistent throughout the entire co-simulation, an equilibrium
point must be found for every interface between simulators.
This equilibrium exists when voltage and current are the same
on each side of each interface after a power flow calculation is
executed on each individual simulator. The equilibrium can be
determined using an iterative initialization method. The exact
implementation of such an iterative method depends on the
way the interfaces between simulators are defined, but the
general idea remains the same. For example, if the interfaces
use the ideal transformer method [8], which consists of an
ideal voltage source on one side of the interface and an ideal
current source on the other, the iterative initialization method
can be implemented as follows:

1) Execute a power flow calculation on each simulator.
2) Measure the voltage at the bus where the current source

is connected.
3) Measure the current flowing through the voltage source.
4) Set the voltage from step 2 in the voltage source.

5) Set the current from step 3 in the current source.
6) If the voltage and current on each side of the interface

differ from those of the previous iteration, repeat from
step 1. Otherwise, stop iterating.

This procedure must be carried out simultaneously for every
interface in the co-simulation.

B. Synchronization Method

To illustrate how a variable-rate synchronization method can
be implemented using the four methods provided by simulator
proxies (see Section II-B1), let us define a simple synchro-
nization method that always sets the inputs of the simulator
lagging the furthest in time. If all other simulators are ahead,
this means that the inputs that the lagging simulator requires
to continue execution are either already available or can be
interpolated from the available ones. This synchronization
method can be implemented as follows:

1) When attending a new synchronization request, wait
until all proxies are in the waiting for inputs state.

2) Determine which simulator is lagging the furthest in
simulation time.

3) Get the outputs of the simulators that the lagging simu-
lator depends on.

4) Set the inputs of the lagging simulator and go back to
step 1.

IV. EXAMPLE USE CASE: CO-SIMULATION OF A THREE
AREA SYSTEM

As an example, let us consider a three area system where
each area is simulated in a different simulator and a fault in one
area makes one of the simulators dynamically adjust its time
step. A monolithic simulation of the same system is carried
out as well as a benchmark.

A. Co-Simulation Scenario

The co-simulated system is composed of three areas (A,
B and C). Each area is a modified IEEE 9 bus system as
specified in [7]. Areas are interconnected by tie lines that
connect a generator bus and a load bus (see Fig. 4). The loads
and generators originally connected to these buses are placed
out of service to enable the flow of power between areas. A
three-phase short circuit occurs at bus 4 in area C at 0.1 s.
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B. Co-Simulation Implementation

The simulators are set in EMT mode with a maximum time
step of 20 µs (dynamically adjusted in area C after the short
circuit). The interfaces between simulators are implemented
with the ideal transformer method [8]. All interface voltage
sources are initially set to 16 0◦ p.u., whereas current sources
are set to 100 A and unity power factor. The initialization and
synchronization methods described in Section III are used.

C. Environment Implementation

The co-simulation environment is implemented with four
virtual servers, each running Windows Server 2012 R2 (64
bits) on a single core with 2 GB of RAM, Python 3.4,
PowerFactory 15.2, and PowerShell 5.0. The co-simulation
master runs on one server, while the remaining three servers
are used for the simulators.

D. Results and Discussion

Fig. 5 shows the percent error at each interface between
simulators during initialization (note the logarithmic scale on
the vertical axis). The error is calculated with respect to
the equilibrium voltage and current values at each interface.
Twenty iterations are needed until full convergence is achieved
and the error is negligible. Nevertheless, after 10 iterations,
all interfaces already show an error below 0.0075 %. When
all interfaces are in equilibrium, the power flow results from
the co-simulation match those from the monolithic simulation.
Although several iterations are needed until full convergence
is reached, once the right set points for each interface are
found and recorded (voltage magnitude and angle for every
voltage source, current magnitude and power factor for every
current source), no iterations are needed for initializing further
co-simulation runs if the same set points are reused.

The voltage at one bus per area and the current flowing
between areas were selected to characterize the time-domain
co-simulation results. Fig. 6 compares the voltage waveforms
obtained from the co-simulation to those obtained from the
monolithic simulation. Here, no difference can be observed
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between co-simulation and monolithic simulation, even after
the three phase short circuit at 0.1 s. Fig. 7, which compares
current waveforms, shows a marginally less favorable result. A
more detailed comparison is made in Fig. 8, which shows the
percent error between co-simulation and monolithic simulation
results with respect to peak values. Here, the error remains
below 1 % in the case of voltage and bellow 5 % in the case of
current. Note how the error behaves differently after the short
circuit at 0.1 s, when the simulator of area C starts adjusting
its time step dynamically.

Although the co-simulation results are remarkably accurate
when compared to those of the monolithic simulation, a max-
imum time step of 20 µs is required to achieve this accuracy, a
rather small time step even for an EMT simulation. This time
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step size was chosen since the accuracy of the co-simulation
results decreases rapidly as the time step size increases, and
the co-simulation is already numerically unstable for a time
step size of 50 µs. This is not surprising considering that the
ideal transformer method has been shown to be accurate but
prone to instability [8].

The co-simulation takes approximately 7 min to complete,
which contrasts with the approximately 1.5 s that the mono-
lithic simulation of the same system requires under the same
conditions. There are several factors that must be taken into
account to understand this difference and to identify measures
that can improve computational performance:

• Communication and synchronization overhead: Between
time steps, additional time is required for communication
between the co-simulation master and each simulator, and
for the execution of the co-simulation master.

• Virtual server performance: The virtual servers used are
not high-performance. Better performing servers would
reduce calculation time and synchronization overhead.

• Implementation of the co-simulation master: Using a
scripting language like Python without taking perfor-
mance optimization measures may lead to an immoderate
synchronization overhead.

• Time step size: A small time step not only increases
the total number of calculations each simulator executes,
but also the total communication and synchronization
overhead, since more data is exchanged between the co-
simulation master and each simulator.

• Interface method: Using an interface method other than
the ideal transformer method could allow larger time
steps, thus decreasing execution time.

• Synchronization method: Serial (Gauss-Seidel) synchro-
nization is used, which typically yields longer execution
times than a parallel (Jacobi) method. However, serial
methods are known to be slightly more accurate [1]. Ad-

ditionally, synchronization is done with a lazy approach,
where simulators only take a step when they must. A
parallel synchronization method with a more proactive
approach, in which simulators take a step whenever they
can, could increase performance.

• Size of models: If the models are small, as is the case with
the 9 bus system, the communication and synchronization
overhead is significant compared to the time simulators
require to solve the model equations. Even if the synchro-
nization method implements some level of parallelization,
the benefit might not outweigh the overhead. In the case
of large models, the time required to solve the models
can become dominant compared to the overhead and
parallelization could offer a performance advantage with
respect to a monolithic simulation.

V. CONCLUSION

This paper introduced a PowerFactory-based co-simulation
environment for researching synchronization methods for
variable-rate, dynamic co-simulations of multi-area power
systems, and presented an example use case with a three
area system. The co-simulation results show errors below 5 %,
even when one of the areas dynamically adjusts its time step.
However, the execution time reached approximately 7 min,
while a monolithic simulation of the same system required
only 1.5 s to complete. Despite this drawback, the observed
accuracy and the numerous measures to potentially reduce
execution time indicate that dynamic co-simulation for multi-
area power systems is feasible. With the help of the presented
environment it becomes easier to explore these measures and
develop methods to reap the full benefits of co-simulation for
this particular application.
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